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A new graphic polynomial , /x  (G, t), has been introduced which depends on 
a vector t and which reduces to the characteristic and matching polynomial 
of the graph G for certain choices of t. This leads to a unification of a great 
part  of the previously developed theories of the characteristic and matching 
polynomials. The basic propert ies of t~ (G, t) are determined. 

A method has been developed by which a function J(t) can be associated 
with every ~--electron index J. Since the component  ta of the vector t is 
interpreted as the extent by which a particular cycle Za of the molecular 
graph G influences the polynomial /x(G,  t), it is possible to use the function 
J(t) in the study of the effect of Z~ on the ~r-electron index J. 

Total or-electron energy, 7r-electron charge and 7r-electron bond order have 
been analysed by this method and a number  of topological rules of the modulo 
4 type have been formulated. It is indicated that all these rules have a common 
algebraic background. 
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1. Introduction 

One of the most  intriguing features of the chemistry of unsaturated conjugated 
hydrocarbons is the fact that cyclic conjugation of the ~--electron system causes 
drastically different effects, depending on whether  the size of the cycle is 4m, 
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4m + 1, 4m + 2 or 4rn + 3. Furthermore, the properties of the polycyclic conju- 
gated compounds differ significantly from those of acyclic systems. 

An early success of quantum theory in chemistry was the ability to reproduce 
a part of these chemical phenomena by means of a simple topological model, 
which is usually called the Hiickel molecular orbital (HMO) theory [1]. 

The limitations of the Hiickel theory are well known (see e.g. [lb], pp. 134-147). 
In spite of encouraging reports which from time to time appear in the chemical 
literature about the agreement of the HMO results with experimental measure- 
ments [2] or with the results of more advanced quantum chemical calculation 
schemes [3], it seems that the HMO theory is nowadays obsolete for quantitative 
description of chemical facts. In problems where qualitative answers suffice, the 
HMO model can be often applied with considerable success [4, 5], although 
caution is always necessary [6]. 

Another reason for the use of the HMO theory is its simplicity, which enables 
one to formulate and mathematically prove statements valid for a large (often 
infinite) class of conjugated systems. This would hardly be possible within any 
other more sophisticated quantum chemical model. Unfortunately, however, the 
approximations which lead to the elegant algebraic and combinatorial form of 
the HMO theory, make the theory oversimplified and thus fully incapable to 
describe certain types of chemical phenomena [6]. On the other hand, those 
properties of conjugated molecules which we will analyse in the present work 
are, at least in a qualitative manner, correctly reproduced by the HMO model. 

A particularly deep insight into the dependence of the HMO results on the 
structure of the conjugated molecule was obtained in the last ten years using 
the mathematical methods of graph theory [7]. 

In the present paper we shall develop a new graph theoretical technique which 
will enable the unification of a great deal of the modulo 4 rules of the Hiickel 
theory. We will exemplify our method on three HMO ~r-lectron indices of 
conjugated hydrocarbons: total ~--electron energy, ~--electron charge density 
and ~r-electron bond order. We will be able to answer the question how cyclic 
conjugation in a molecule influences these zr-electron characteristics, which is 
a problem of certain importance in the topological theory of conjugated molecules 
[7]. We will obtain statements within and about the HMO model, which, when 
correctly and cautiously interpreted, lead to some useful qualitative chemical 
conclusions. 

The paper is divided into two parts. In the first part we shall present the 
mathematical formalism of our method whereas in the second we shall apply it 
to the Hiickel theory. 

2. The it-Polynomial 

Two graphic polynomials have been extensively studied within the topological 
theory of conjugated molecules, namely the characteristic polynomial ~b(G) 
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[7, 8] and the matching polynomial a(G) [9, 10] of the molecular graph G. 
These polynomials have applications also in a number of other fields of natural 
sciences and mathematics [8, 9, 11-13]. 

If A is the adjacency matrix of (7, then by definition [7, 8], 

r = 05((7, x) = det ( x I  - A ) .  (1) 

If p(G ,  k )  is the number of k-matchings in (7, then by definition [9], 

a((7) =a(G, x)= ~, (--1)kp((7, k)x "-2k. 
k = 0  

(2) 

From the form of these two definitions one could hardly anticipate any similarity 
between &(G) and a (G). However, detailed studies [9, 12-14] show that 6((7) 
and a ((7) possess a surprisingly large number of analogous combinatorial and 
algebraic properties. In connection with this the problem was set whether the 
theory of these two polynomials could be unified by means of a reasonably 
chosen function/~(G, t), which would continuously transform a ( G )  into r 
when the parameter t changes from zero to unity. 

Indeed, such a function could be designed and it appeared to be of some relevance 
for the topological theory of conjugated molecules [15, 16]. 

We shall use the following standard graph theoretical notation and terminology. 
G will denote a graph with n vertices: vl, v2 . . . . .  v, and m edges; the edge 
connecting the vertices vi and v i is denoted by eii. The subgraphs (7-vi  and 
( 7 - e ~  i are obtained from (7 by deletion of the vertex v~ and the edge e~j, 
respectively. 

Let G contain r cycles: Za, Z 2 , . . . ,  Zr. (These cycles, of course, need not be all 
mutually independent.) Then G - Z a  is the subgraph obtained by deleting all 
the vertices (and incident edges) of Za from (7. 

We shall say that Za and Zb are disjoint cycles if they have no vertex in common. 
Let Za, Zb, Zc . . . .  be a collection of mutually disjoint cycles of G. Then the 
subgraph (7 - Za - Zb -- Zc . . . .  is obtained from (7 by deletion of all the vertices 
of  Za, Zb, Zc . . . . .  

The deletion of cycles from a graph may result in a subgraph without vertices - the 
empty graph ~ .  

For this subgraph we shall define 

a (Q)  = r  =tL(~)  = 1. 

For example, the molecular graph (70 of fulvalene contains two cycles Z1 and 
Z2 which are disjoint. 
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Go Z~ Z2 

The three possible subgraphs resulting when the cycles are deleted from Go are 
given as follows: 

Go-Z 1 G0-Z 2 Go-Z 1 -Z 2 

The concept of Sachs graphs has been already introduced in a number of previous 
publications [7, 8, 17]. Let s be a Sachs graph. Then n(s), c(s) and r(s) are the 
number of vertices, components and cycles, respectively, of s. The empty graph 
will be also considered as a Sachs graph with the properties n ( O ) = c ( O ) =  
r(O)=O. 

Let S be the set of all Sachs graphs which are contained in G "as subgraphs and 
let S O be the set of all Sachs graphs from S which have the property r(s)= O. 
Note that ~ is element of both S and S ~ 

The following two relations, which have closely resembling form, exist between 
~b(G) and S and between a (G) and S ~ respectively: 

~b(G) = Y~ (-1)~(')2~(~)x "-"(') (3) 
s ~ S  

= ( 1)~(~)x"-~(~) a ( G ) =  E (-1) ~(~)2'(~)x~-~(~) E - 
s e S  ~ s e S  ~ 

(4) 

However, while (3) is the important Sachs theorem [7, 8, 17], Eq. (4) should be 
understood as just another form of definition (2). In fact, the Sachs theorem (3) 
is a graphical representation of the expansion of the determinant (1), that is of 
an antisymmetrized summation over all n! permutations. If in such an expansion 
we consider only the transpositions, then we obtain the matching polynomial, 
Eq. (4). 

The set S O is obtained from S by abandoning all the cyclic Sachs graphs. Therefore 
o~(G) can be understood as being derived from 4~(G) if in the Sachs formula (3) 
one fully neglects the contributions of all Sachs graphs which possess cycles. 
Having in mind this point of view, we arrive at the idea to try to partially neglect 
the cyclic Sachs graphs in (3). This can be realized in the following way. 
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Let  t = (tl, t2 . . . . .  tr) be an r-dimensional vector, whose components are arbitrary 
numbers (or functions). The component  ta of t is associated to the cycle Za of 
the graph G, a = 1, 2 . . . . .  r. 

Let  us consider a Sachs graph s which is composed of r(s) cycles 
Za 1, Z~ 2 . . . . .  Z~r~,~, r ( s )>0 .  Then the product t, i t~2.. ,  tar~,~ will be denoted by 
T(s). For acyclic Sachs graphs s ~ $o (for which r(s) = 0), we define T(s) = 1. 

Definition. The/x-polynomial  of the graph G is 

/X(G) =/X(G, t) =/X(G, t, x) = ~ (-1)c(s)2r(~)xn-"(S)T(s). (5) 
S E S  

The components of the vector t can be thus interpreted as the weights of the 
corresponding cycles, by which they contribute to the Sachs-type summation 
formula (5). 

Recently Farrell [18] has introduced a general class of graphic polynomials, the 
so called F-polynomials.  The/x-polynomial  appears to be a special case of an 
F-polynomial .  

Let  the vectors (0, 0 . . . . .  0) and (1, 1 . . . . .  1) be denoted by 0 and 1, respectively. 
If t = 0, then all cyclic Sachs graphs have a zero contribution to the summation 
(5) and thus Eq. (5) reduces to Eq. (4). In the case of t = 1, all T(s) 's are equal 
to one and (5) reduces to (3). Thus, 

(a) /X(G, 0 ) = a ( G ) ,  

(b) ~(G,  1) = 4,(O), 

which shows that /x (G) fulfills the desired requirements. 

The /x-polynomial is a generalization also of the characteristic polynomial of 
M6bius graphs. Let  G* be the molecular graph of a M6bius system. Then a 
particular edge e of G* is weighted by -1 .  Therefore,  

(c) if t~ = - 1  whenever the cycle Z~ contains e 

and t~ = +1 otherwise, then/x(G,  t ) =  ~b(G*). 

For  details on the M6bius graphs see [19]. 

It can be proved that 

/x (G) =/x (H) (6) 

when the graphs G and H are isomorphic and their cycles are equally labelled, 
and 

/x(G1 -i- G2) =/x(G1)/x(G2), (7) 

with G1 -i- Ga denoting a graph having two disconnected components G~ and Gz. 
Eqs. (6) and (7) show that /X(G) is correctly defined from a graph theoretical 
point of view. 
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By collecting in (5) all those Sachs graphs which contain the same cycles, we 
deduce: 

Proposition l a. 

ix(G)=a(G)-2 ~ t~(G-Z~)+4 ~ tJb~(G--Z~--Zb) 
a = l  a,b 

-8  Y totbtc,~(G-Z~-Zb--Z~)+.... (8) 
a,b~c 

The second, third etc. summation in (8) goes over all pairs, triplets etc. of 
mutually disjoint cycles in G. This combinatorial identity can be inverted, thus 
leading to 

~ ( G ) = i x ( G ) + 2  ~ t~ix(G-Z~)+4 Z tJbix(G-Za-Zb) 
a = l  a,b 

+8 5: t, tbtcix(G--Z~--Zb--Zc)+'''. (9) 
a,b,c 

The ix-polynomial can also be expressed in terms of the characteristic poly- 
nomials, namely: 

Proposition lb. 

i x ( G ) = r  ~ (1-t~)&(G-Z~)+4 Y~ (1--ta)(1--tb)r 
a = l  a,b 

+8 Z (1-$a)(1-tb)(1-tc)r (10) 
a,b,c 

and the inversion of (10) yields 

r  ~ (1-t~)ix(G-Z~)+4 ~, (1--t~)(l':-tb)ix(G--Za--Zb) 
a = l  a,b 

-8  Z (1--ta)(1--tb)(1--t~)&(G--Z~--Zb--Zc)+'''. (11) 
a,b,c 

For t = 1 we obtain from (8) 

r Z o~(G-Z~-Zb) 
a a,b 

-8  Z o~(G-Z~-Zb-Zc)+.. . .  (12) 
a,b,c 

while for t = 0 Eq. (10) implies 

o~(G)=r Z &(G-Z~-Zb) 
a a,b 

+8 Z r  (13) 
a,b,c 
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Note that the above expansion formulas (8)-(13) are finite and contain at most  
r summations.  They show that a certain symmetry  exists between tz (G), a (G) 
and ~b (G). 

As an example we shall calculate the /x-polynomia l  of Go, the molecular graph 
of fulvalene. According to (8), 

tz (Go) = a (Go) - 2 t~a ( G - Z~) - 2t2a ( G - Z2) + 4t l tza  ( G - Z~ - Z2) 

= x ~o_ 1 lx  s + 4 lx  6 - 61x n + 3 lx  2 - 1 - 2(tl + t2)(x 5 _ 5x 3 + 5x) + 4qt2.  

The necessary matching polynomials can be obtained using appropriate  recursion 
techniques [10]. 

Corollary 1.1. If G is acyclic, then tz(G, t ) = ~ b ( G ) = a ( G ) ,  since the vector t 
then has no components .  

Thus for acyclic graphs the /x-polynomia l  trivially reduces to the matching and 
characteristic polynomials. Therefore  in the following we will consider only cyclic 
molecular graphs. 

Corollary 1.2. If G possesses a single cycle, then 

~ ( G ) = a ( G ) - 2 t a ( G - Z )  

= ~b (G) + 2(1 - t)4~ (G - Z )  

= ( 1 - t ) a ( G ) + t d p ( G ) .  

According to definition, the Iz-polynomial is a linear function of each of the 
parameters  ta. Differentiation of Eq. (8) with respect to t~ gives 

a ~ ( G )  
- - 2 a ( G - Z a ) + 4 Y .  t b a ( G - Z a - Z b )  

Ot~ b 

- 8  Z ~ a ( G - Z a - Z b - Z c ) + . ' . .  
b , c  

Thus we h a v e  proved 

Proposition 2. 

au(G) 
= - 2 ~ ( G - Z a ) .  

Corollary 2.1. 

021x(G) = { ; t z ( G - Z ~ - Z b )  

Ot~ atb 

if Z~ and Zb are disjoint, 

otherwise. 
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Corollary 2.2. 

co(G) = p,(G)-Y, ta 
02t~ (G) o~(G) 

Ot~ ~,b 3t~ Otb 

03/z(G)  
- ~ tMbtc + ' ' . ,  

~,b,~ Ota Otb Otr 

Oix(G) 
r  +Y~ (1- t~)(1- t b ) - -  

Ot~ ~,b 

o3~(O) 
+ Y. ( 1 - - t a ) ( 1 - - t b ) ( 1 - - t ~ ) - - + . . . .  

a,b,c Ot~ Otb Otr 

Corollary 2.3. If t~ = t for all a = 1 . . . . .  r, then 

O~(G) 
= - 2  Y~ t . ( G - Z . ) .  

3t 

In graph spectral theory it is well known [8] that 

Oct.(G) 

Ot. Otb 

d e ( G ) _  n 
~2 r  (14) 

dx i=1 

If we differentiate Eq. (10) with respect to x and take into account (14), we obtain: 

Proposition 3. 

3/x(O) = 
i t z ( G - v j ) .  (15) 

3X 1=1 

Note that (15) holds for arbitrary t, but under the assumption that t is independent 
of x. 

Let  e0 be an edge of the graph G. This edge may eventually belong to some of 
the cycles Z~ of G. Then S can be partit ioned into the subsets S_, S+ and S~, 
a = 1, 2 . . . . .  r, S = S_ w $+ ~_.J~=t S~, such that S_ contains the Sachs graphs of 
G which do not possess e,, S+ contains the Sachs graphs of G in which e,  is an 
isolated edge and Sa contains those Sachs graphs in which the edge eq belongs 
to the cycle Z~. (If e~j does not belong to Z~, then S, is an empty set. An edge 
cannot, of course, belong to more than one component  of a Sachs graph.) 

According to the definition of the Ix-polynomial, 

y. (_l)C(s)2r(~ x n-.(~)T(s) = tz (G - eij), (16) 
s ~ $ -  

Y~ ( -  1)c(s)2r(S~x"-"(s)T(s) = - Iz  (G - vi - vi). (17) 
5ES+ 

If eli belongs to the cycle Za, then 

Y. (-1)c(')2r(') x n - " ( ' ) T ( s ) = - 2 t d x ( G - Z ~ ) .  (18) 
s~Sa 
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Otherwise the left hand side of (18) is equal to zero, Combining Eqs. (16)-(18) 
we obtain the following recursion formula: 

Proposition 4. 

St(G) = t z ( G  -ei j)  - s t ( G  - v / -  v j ) -  2 Y, tast(G-Za), (19) 
a 

where the summation goes over all cycles Z~ which contain the edge eii. 

For example, 

Corollary 4.1. For t = 1 and t = 0, Eq. (19) reduces to the previously known 

~t (Go) = I~ 

(9(G) = q~(G -eii)-gg(G - v i -  v j ) -  2 Y. ~b (G - Za), 
a 

a(G) =a(G-ei i ) -o l (G -v l -v j ) .  

Corollary 4.2. If eii is a bridge 1, then 

St (G) = St (G - e/i) - St (G - v / -  vi). 

For example, the edge connecting the two five membered cycles of the fulvalene 
graph Go is a bridge. Therefore,  

Corollary 4.3. Let g and h be vertices of the graphs G and H, respectively. Let  
G �9 H be obtained by identifying g with h. Then 

St(G. H ) = t z ( G ) s t ( H - h ) + s t ( G - g ) # ( H ) - x s t ( G - g ) .  St(H-h).  

Propositions 1-4 summarize the main relations which exist between the poly- 
nomials St, ot and ~b and also present a few combinatorial identities for St(G); 

1 An edge e of the graph G is called a bridge if G -  e has more components  than G. Consequently,  

e cannot belong to a cycle of G, and $ = $+ u S_. 

[8, 10] recursion relations for ~b (G) and a (G), 
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these latter are generalizations of the previously known results for o~(G) and 
~b(G) and reduce to them when we set t = 0 and t = 1, respectively. 

The polynomials a (G) and ~b (G) have the distinguished algebraic property that 
all their zeros are real. If t r 0, 1, the zeros o f /x (G,  t) are not necessarily real 
numbers, as it was shown on the example of the complete graph with five vertices 
[15]. Fortunately, there is a considerably large class of graphs (which includes 
also the molecular graphs of numerous conjugated systems, e.g. fulvalene) for 
which the following statement applies. 

Let  t - < l  mean ItaJ-< 1 for all a = 1, 2 . . . . .  r. 

Proposition 5. If G is a graph whose edges do not simultaneously belong to two 
or more cycles, then/x(G,  t) has real zeros for all t---1. 

This result has been proved in [15] for the special case when all the components 
of t are mutually equal. The proof of the general case is essentially the same 
and will not be reproduced here. 

3. On the Origin of Modulo 4 Rules in Hiickel Theory 

The Hiickel's 4m + 2 rule was originally formulated for monocyclic molecules 
[1], but soon thereafter it was extended also to the case of polycyclic systems 
(see for example [5], pp. 93-95). The question of the generalization of the 
Hiickel rule to polycyclic hydrocarbons seems, however, to be quite difficult, 
and only recently a full solution of this problem was obtained for alternant 
hydrocarbons [20]. 

In the last few years graph theoretical investigations have enabled the discovery 
of several further modulo 4 regularities within the framework of the H MO  
model. Modulo 4 rules were observed for total ~'-electron energy [20, 21], charge 
distribution [22, 23], bond order [24] and H O M O - L U M O  separation [16, 22, 25] 
of both Hiickel [16, 20-25] and M6bius systems [16, 19, 26]. For completeness 
we mention also the modulo 4 rules in the Woodward-Hoffmann theory [4] 
and some of those rules which have been deduced independently of the HMO 
model [27]. 

In this section we shall develop a new unified approach to the modulo 4 rules 
of Hiickel theory. The general strategy of our method is the following. 

The applicability of graph theory in HMO theory is mainly based on the possibility 
to express the HMO ~--electron indices as functions of the characteristic poly- 
nomial of the molecular graph G and (eventually) of certain of its subgraphs 
Gj,/' = 1,2 . . . . .  

These expressions are in fact the Coulson-Longuet-Higgins integral formulas 
[28, 29]. 
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Let J be such a 7r-electron index and let the corresponding Coulson-Longuet -  
Higgins formula be 

J = f ( r  (G), r (G;)), 

where f is a certain, analytically well defined function. 

We construct now the variable quantity J(t), which depends on the vector t as 

J(t) = f(/~ (G, t),/~ (Gi, t)). 

Obviously, J(1) = J. 

J(t) can be expanded in a power series 

J ( t ) = y ( o ) + Z Jato + X E Jabt~tb + X Y, Z Ja~ctatbtc +" ' ", 
a a b  a b c  

oJ(O) 1 02j(O) 1 03j(O) 
Ja = , Jab -- Jabc etc. 

Ota 2! OtaOtb ' 3! ataOtbOtc 

The above series is convergent for t - 1  at least in the case of the Coulson- 
Longuet-Higgins formulas considered in this paper. Therefore,  

J = J(O) + 2  Ja + 2  ~. Jab + Z  s • Jabc +" " ". (20) 
a a b  a b c  

Thus the 7r-electron index J is decomposed into a number of terms: J(O), Ja, 
Jab, Jab . . . . . .  which are in many cases relatively simple functions of the molecular 
topology. Having in mind that & is the weight by which the cycle Z~ contributes 
to/x (G, t), we can interprete 

J(O) as the effect of acyclic structural details on J, 
Ja as the first order effect of the cycle Z~ on J, 
Jaa as the second order effect of Za, 
Ja~ as the third order effect of Z, ,  
Ja.b (a ~ b) as the first order collective effect of the pair of cycles Z~ and Zb, 
Jaab, Jabb (a 7 ~ b) as the second order collective effects of Z~ and Zb, 
Jabc (a ~ b, C) as the first order collective effect of the triplet of cycles Za, Zb and 

Zc on the 7r-electron index J, etc. 

The total effect J(a) of the cycle Z~ on the index J is thus 

J ( a ) = J a + J a a + J a a a  + ' ' '  (21) 

and consequently, J - Z a  J(a) represents the effect of simultaneous cyclic conju- 
gation in two or more cycles. 

In the following considerations we shall often need three graphic polynomials 
(G), [G] and {G, t}, which are in a simple manner related to the characteristic, 
matching and/x-polynomial ,  respectively of the graph G, namely 

(G) = (G, x) = ionq~(G, ix), (22) 

where, of course, 
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[G] = [G, x ] =  i-ha(G, ix), 

{G, t} = {G, t, x}= i-~lx(G, t, ix). 

Here  and later, i = v/--Z-i -. 

From Proposition 2 and Eq. (24) follows 

3{G, t}= _2i_lzal{G-Za, t}. 

I. Gutman and O. E. Polansky 

(23) 

(24) 

(25) 

3.1. Properties of Some Topological Functions and Their Integrals 

In the present section we shall determine some properties of the topological 
functions [G - Z~ ] / [G] ,  [ G - Z~ - Zb ] / [G]  etc. These functions and their integrals 
appear in all expressions which will be derived later within our topological 
analysis of the total ~--electron energy, ~r-electron charge distribution and 
7r-electron bond order. 

In the following we shall adopt the usual abbreviation [20, 24, 30], namely 

- f ( x )  d x  - ( F ( x ) ) -  ( F ) .  
7"i" oo  

From Eq. (23) and the definition (2) of t~ (G) it immediately follows that 

[G] =2p(G,  k)x "-2k. 
k 

Since the p(G, k)'s are non-negative integers for all k = 0, 1 . . . . .  we conclude 
that 
(a) if the graph G has an even number of vertices, then [ G , - x ]  = [G, x] and 

[ G ] > 0  for all real values of the variable x (x ~ 0); 
(b) if the graph G has an odd number of vertices, then [G, - x ]  = - [ G ,  x] and 

sign [G] = sign x. 

In the later considerations we shall frequently use the fact that whenever F(x) 
is an odd function, i.e. F ( - x )  = -F(x) ,  then (F(x)) = O. 

Let Iz.I denote the size of the cycle Z, that is the number of its vertices. 

[G -Z~]/[G] is an even (odd) function if Izal is even (odd). Similarly, [ G - Z a  - 
Zb]/[G] is even (odd) if IZ~l + Izbl is an even (odd) number, etc. Consequently, 
the integrals ([G-Z~]/[G]),  ( [ G - Z ~ - Z b ] / [ G ] )  etc. are positive if Iz~l, 
Izal+lzbl, etc. have even values and vanish whenever IZ~l, IZal+lZbl etc. are 
odd. Therefore  in the following considerations we shall assume that IZ~[, IZal + IZ~l 
etc. are even numbers. 

It can be proved (see the Appendix) that for all real values of the variable x, 
the function 2 [ G - Z ] / [ G ]  is less than unity. For large values of x, [ G - Z ] / [ G ]  
behaves asymptotically as x -Izf. 
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[G-Z]/[G] is usually a bell-shaped function with a maximum at x = 0. Excep- 
tionally, if [ G - Z ] / [ G ]  = 0 for x = 0 then [ G - Z ] / [ G ]  has a minimum at x = 0 
and [ G - Z ] / [ G ] < <  1 for all x. Therefore,  if Z1 and Z2 are two cycles of equal 
size in a conjugated system G, then the integral ([G-Z1]/[G]) is greater than 
([G -Z2]/[G]), provided that [G -Z1]/[G] r 0 and [G -Z2]/[G] = 0 for x = 0. 

In order to illustrate this, consider the two six-membered cycles Z l l  and Z12 of 
perylene, G1, and the two ten-membered cycles Z21 and 222 of pyrene, G2. 

G1, Zll G1, Z12 G2, Z21 G2, Z22 

For x = 0 the functions [ G 1 - Z l l ] / [ a l ] ,  [G1-212]/[G1], [G2-Z21]/[G2] and 
[G2-222] / [G2]  have the values �89 (=maximum), 0 (=minimum), 1 (=maxamum) 
and 0 (=minimum), respectively. The corresponding integrals ( [ G -  Z]/[G]) are 
equal to 0.0935, 0.0207, 0.0325 and 0.0059, respectively. 

If H is a subgraph of G, then p(H, k)<-p(G, k) for all k = 1, 2 . . . . .  Therefore  
also [H] -<[G]  for all positive values of x. In particular, [G-Za-Zb]/[G]< 
[G- Za]/[G] for all values of x. 

As a consequence of the above inequality, the integral ( [ G - Z a ] / [ G ] )  is about 
one order of magnitude larger than ([G-Z,-2b]/[G]). (Note also that if the 
cycles Z ,  and Zb are not disjoint, then G -  Za - Z b  is meaningless and we must 
set [G -Za -Zb] =-- 0; thus all the respective integrals vanish. In particular, ([G - 
Z~ -Zb]/[G]) = 0 for a = b.) 

As an illustration consider anthracene, G3, and tetracene, G4, whose 
six-membered cycles are denoted by Z31, 232, 233 and Z41, 242, 243, 244, 
respectively. 

13 3 G4 

For H being the subgraph G3-231, G3-Z32 and G3-231-233,  the integral 
([H]/[G3]) is equal to 0.0856, 0.0672 and 0.0023, respectively. For H being 
the subgraph G4-Z4a, G 4 - 2 4 2 ,  G4-241-243  and G4-241-Z44, the integral 
([HI~[G4]) is equal to 0.0782, 0.0557, 0.0014 and 0.0044, respectively. Note 
in addition that the the integrals ( [ G 3 -  2 3 1 -  232]/[G3]), ( [04-  2 4 2 -  243]/[G43) 
etc. are equal to zero since the respective cycles are not disjoint. 
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The integrals ([G-Z~][G-Zb]/[G] 2) and ([G-Z~]2/[G] 2) are considerably 
smaller than ( [ G - Z , ] / [ G ] ) ,  provided, of course, that [Za[ is even. 

For example, if the four-, six- and eight-membered cycles of benzcyclobutadiene, 
Gs, are denoted by Z51, Z52 and Z53, then ( [ G s - Z s i ] / [ G s ] )  is equal to 0.1716, 
0.1098 and 0.0915 for/" = 1, 2, 3, while ([G5 -Zsi][G5 -Zsk]/[G5] 2) is equal to 
0.0309, 0.0255, 0.0232, 0.0217, 0.0205 and 0.0183 for (f, k ) - - (1 ,  1), (1, 2), 
(1, 3), (2, 2), (2, 3) and (3, 3), respectively. 

G s, Z51 G5, Z52 G5, Z53 

If both ]Za[ and [Z d are odd, then the integral ([G - Za ][G - Zb ]/[G] 2> is positive, 
but has relatively small value because for x = 0, [G - Z ~ ]  = [G - Z b ]  = 0. 

Thus for example, in the case of azulene, G6, we have ([G6-Z6112/[G612) = 
0.0119, ( [ G 6  - Z 6 1 ] [ G 6  - Z62]/[a] 2) = 0.0066 and ( [ G 6  - Z6212/[a6] 2) = 0.0043, 
which should be compared with the analogous integrals for naphthalene, GT: 
( [ G 7  - Z7112/[GT] 2) = [ G 7  - Z 7 1 ] [ G 7  - Z72]/ [G7]  2) = 0 . 0 2 0 0 .  

G6 G7 

We are now prepared to examine how cyclic conjugation influences the main 
HMO ~--electron indices of conjugated molecules. 

3.2. Total ~-Electron Energy 

Let G and G'  be two molecular graphs with equal number of vertices and E(G) 
and E(G') be the pertinent total ~'-electron energies. Then [29], 

E(G) - E(G') = (log ((G)/(G'))) .  (26) 

Let  us choose G'  in Eq. (26) to be a graph with n vertices but without edges. 
Then (G') = x n and E(G') = 0. Consequently, E = E(G) = (log ((G)x-n)),  which 
can be rewritten as 

E = E ~ + (log ( (G) / [G] ) ) ,  

with 

E ~ - - , ( l og  ([G]x-n)).  

According to our method, we construct now the function 

E(t) = E ~  ({G, t}/[G])) (27) 
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and expand it in a power series. It is immediately seen that for t = 0 the second 
term on the right side of (27) vanishes and thus E ~  E(0). Therefore  E ~ is the 
contribution of the acyclic structural elements of the conjugated system to total 
~r-electron energy. (We note in passing that the difference E - E  ~ was recently 
interpreted as a novel type of "topological" resonance energy [31], since it can 
be understood as the entire effect of cycles on the total zr-electron energy. 

Using Eq. (25) one can easily derive from (27) 

oE(o) -~z b/[O-Z.] \  
Ota 2i a t -[--~ "/ 

02E(0) _4i_,z.l_lzbl{([G-Z~-Zb] ~ [[G-Za-Zb];~ 
OtaOtb = I - - \  [-Gi IJ '  

akE(0) _ 2 k ( k _  1) ! i -k lzJ ( ( [G-Z~] / [G])k) .  
( 0 t a ) k  --  

(28) 

(29) 

(30) 

Examination of formulas (28)-(30) gives a considerable insight into the depen- 
dence of total ~r-electron energy on molecular structure. 

Rule 1. The first order (and therefore the most significant) effect of a cycle Z 
on total ~--electron energy is positive if ]Z[ = 4m +2,  negative if ]Z] = 4m and 
zero if [Z] = 4m + 1 or 4rn +3.  The second order effect of a cycle Z is negative 
if [Z[ is even and positive if ]Z[ is odd. 

According to (20) and (30), the kth order effect of a cycle Za on total ~'-electron 
energy is 

2 k 
_ _i-klzol(( [G_ Za]/ [G])  k) 

k 

and therefore the total effect of this cycle is given by 

2 k 
E ( a ) = -  E 5-i-klZ~ (31) 

k = l  K 

In the Appendix it is proved that for even membered cycles the condition 

2 [ G - Z ] / [ G ] < _  1 

is fulfilled for all x ~ (-oe, +oo). Consequently, Eq. (31) can be transformed into 

E(a) = (log (1 + 2[G -Za]/[G])) if [Z~[ = 4m + 2, (32a) 

E(a) = (log (1 - 2[G -Za]/[G])) if [Za] = 4m. (32b) 

The analogous relation for odd-membered cycles reads 

E(a) = �89 (1 + 4 [ G  -Z~]2/[G]2)). 
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From Eqs. (32) is evident that E(a) > 0 if [Za[ = 4m + 2 and E(a) < 0 if [Za] = 4m. 
Thus we have deduced: 

Rule 2. The effect of a cycle Z on total ~r-electron energy is positive if [Z[ = 
4m + 2  and negative if [Z] = 4m. 

This is exactly the s ta tement  of the (generalized) Hfickel 4m + 2 rule. We see 
that as long as the collective effects of pairs, triplets etc. of cycles are disregarded, 
the Hiickel rule is generally valid. It has been shown elsewhere that these 
collective effects may in certain exceptional cases cause violations of the Hiickel 
rule, but only in the case of (4m + 2 ) - m e m b e r e d  cycles [20]. 

Rule 3a. A pair of cycles Za and Zb has a non-vanishing first order collective 
contribution only if Izal + Izbl is even. 

This contribution depends on two terms which have opposite signs (see Eq. (29)) 
and therefore it is difficult to predict whether  it stabilizes or destabilizes the 
molecule. 

If, however,  Z~ and Zb are not disjoint, then the second integral in (29) vanishes 
and we have: 

Rule 3b. The first order collective contribution of the cycles Z~ and Zb is positive 
if Za and Zb form one of the following pairs: 

I Z ~ l = 4 m + 2  and ]Zbl=4m ', 

[ Z ~ [ = 4 m + l  and IZbl=4m'+l, 

I Z a l = 4 m + l  and IZbI=4m'+3. 

Otherwise, the effect is negative. 

The higher order collective contributions of cycles appear  to conform to quite 
complicated mathematical  expressions and therefore their analysis becomes 
difficult. Since these effects are usually small and chemically insignificant, we 
shall not continue our considerations along these lines. 

3.3. zr-Electron Charge 

Let us denote  the ~--electron net charge on the atom r of the conjugated 
hydrocarbon G by Qr. Then 2 [28], 

Q, = Q,(G) = -i((G - v,)/(G)). 

We introduce now the quantity Q,(t) as 

Or(t) = - i ( { G -  v,, t}/{G, t}) (33) 

Since [G - v,]/[G] is necessarily an odd function, it immediately follows that 

Qr(O) = -i([ G -  v,]/[ G]> = O. 

2 Note that this equation holds for those conjugated systems which have filled bonding and empty 
antibonding molecular orbitals; in the following we shall restrict our considerations to such systems. 
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Rule  4a. Acyclic structural elements of the molecular topology have no effect 
on 7r-electron charge. 

Using the formula (25) it is easy to determine the expression for the first order 
effect of the cycle Za on Or. Let  us for brevity introduce the symbols {G, vr, Za} 
and [G, vr, Za] as follows: 

{ G - v r - Z a ,  t}{G, t } - { G - v r ,  t } { G - Z a ,  t} = {G, vr, Za}, 

[G - vr - Za][G]  - [G - Vr][G - Z a ]  = [G, vr, Za]. 

Then 

aOr(t) = 2i_lzol+l({G, vr, Za} /{G,  t}=> (34) 
at~ 

and consequently the first order effect is 

aO,(O) = 2i_lz i+l([G, v,, Z=]/[G]a). (35) 
ata 

In order to determine the kth order effect of the cycle Z=, note that according 
to (25), 

a 
{G, Vr, Za} = -2i- lzal({G - vr - Za}{G - Z=}-  {G - Z~}{G - v, - Za}) = 0 

where we have used the fact that { G -  v r -Z~ ,  t} and { G - Z ~ ,  t} cannot depend 
on ta. Thus also {G, vr, Z~} is independent of t~. Now a repeated differentiation 
of Eq. (34) results in the expression (36) for the kth order effect of the cycle Za: 

i(2i_lZj~k/[ G - Za] k-1 , \ [G, Za]/.\ (36) 

The total effect of Z~ on the 7r-electron charge of the atom r is therefore 

Qr(a)=i ~ (2i-izol)k/[G-Z~]k-' \ Za]l \ 

= 2i-lzJ+'([G~]~a] (1-2i-tz~l[G-Za]/[G])-'). 

Subtracting from this latter expression the term i ( [ G - V r ] / [ G ] )  (which is equal 
to zero), we obtain after appropriate transformations 

Qr(a) = 2i-Fz~l+l([G, v ,  Z~] / ([G]  2 + 4 [ G -  Z,]2)) (37) 

It is interesting to note that the formulas for the first order effect (35) and for 
the total effect (37) of the cycle Za on ~'-electron charge, have closely related 
algebraic form, contrary to the analogous expressions for total ~--electron energy, 
Eqs. (28) and (32). 
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If [Za] is even, then both the functions ( [ G -  v , -  Za][G]) and ( [ G -  v , ] [ G - Z a ] )  
are odd functions and consequently [G, v,, Za] is also an odd function. Therefore  
the integrals in Eqs. (35)-(37) vanish. 

Rule  4b. (4m +2)-  and (4m)-membered cycles have no kth order effect on 
~r-electron charge for all k = 1, 2 . . . .  and thus the total effect of such cycles is 
also equal to zero. 

The collective effect of two (or more) cycles on total 7r-electron energy conforms 
to rather complicated topological formulas. For instance, the first order collective 
effect of two distinct cycles Za and Zb is given by 

l_ O2Q,(0) = 2i_lzal_lzbl_l. 
2 0 t a  Otb 

(([G][G, v,, Za + Z b ] -  [G - Zo][G, v,, Z b ] - [ G  -Z~] [G ,  v,, Zo])/[G] 3) 

and the only simple conclusion which can be drawn is that this effect is equal 
to zero if the two cycles have the same parity. 

It can be shown that also in the general case 

akO,(O) 
-- 0 (38) 

ate1 ate2 �9 . . Ot~k 

whenever IZoll+lZa21+'''+lZakl is even, i.e. the collection of k cycles 
Zal, Z~2 . . . . .  Zak may have a non-zero collective effect on 7r-electron charge 
only if the number of odd-membered cycles in this collection is odd. 

According to the well-known Pairing theorem, alternant hydrocarbons have a 
uniform HMO ~--electron charge distribution, i.e. 

O , = 0  for a l l r = l , 2  . . . . .  n. (39) 

Since the alternant systems (by definition) cannot possess odd-membered cycles, 
we see that any collection of cycles in an alternant hydrocarbon satisfies Eq. 
(38). This conclusion, together with Rules 4a and 4b results in the following 
generalization of the statement (39). 

Rule  5. In the case of alternant hydrocarbons all topological factors which have 
been considered in the expansion (20) have separately a zero effect on 7r-electron 
charge. 

From Rules 4 and 5 it follows that (4m +1)-  and (4m +3) -  membered cycles 
are the only topological factors which determine the r charge in 
conjugated hydrocarbons (of course, within the Hiickel model). 

In the case of odd-membered cycles Eq. (37) can be rewritten as 

O,(a)  = Or l (a ) - -Or2(a)  if 12ol = 4 m  +1 

and 

Qr(a) = Q, 2 (a ) -  OH(a)  if ]Za] = 4m +3  
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with 

Orl(a) = 2([G - v,. - Za ][G]/([G]" + 4[G - Z~ ]2)) 

Or2(a) = 2([O - vr][G - Za] / ( [G]  2 -1- 4[G - Za ]z)). 

Thus the effect of a cycle on the rr-electron charge is presented by a difference 
of two terms, which have a rather similar dependence on molecular topology. 
Therefore  it is not easy to formulate any generally valid rule neither about the 
sign of the effect (37) nor about its magnitude. 

There is however an important special case, namely when the vertex vr belongs 
to the cycle Za. Then the subgraph G - v r  contains not the cycle Za and con- 
sequently the polynomial [ G -  vr - Z ~ ]  is identically equal to zero. Therefore  the 
term O ~ ( a )  vanishes. (The integral Or2(a) is, of course, always positive.) 

Rule  6. If the conjugated center r belongs to the odd-membered cycle Za, then 
Za induces a negative r charge on this center (Q~(a) < 0) if [Za] = 4m + 1 
and Za induces a positive ~'-electron charge (Qr(a) > 0) if ]Za] = 4 m  + 3. 

From the present analysis we see that the or-electron charge in conjugated 
hydrocarbons is essentially governed by modulo 4 topological rules, although 
these are much more complex than in the case of total ~--electron energy. 

The sign of the ~--electron charge of those atoms which belong to only one 
odd-membered cycle is completely determined by Rule 6. If, however, the atom 
belongs to two or more odd-cycles, then its ~--electron charge is a result of a 
competition between the effect of every particular odd-cycle (as given by Rule 
6) and of collective cyclic effects. 

3.4. w-electron bond order 

In order to derive the formulas for the dependence of the bond order on cyclic 
conjugation in a ~r-electron system, we start on with the identity [28] 

I  40, Prs = P r s ( G ) - 2  k=l' 

where Prs is the rr-electron bond order of the bond between the atoms r and s 
of the conjugated system whose molecular graph is G, whereas Gk denotes the 
graph which is obtained from G by setting a (variable) weight k on the edge ers 
in order  to label this edge; E ( G k )  is the total rr-electron energy corresponding 
to Gk. 

In the following we shall consider only the case when vr and vs are adjacent 
vertices. 

Using Eq. (26) and the fact that a E ( G ) / O k  = 0, we can transform (40) into 

P,.s ={10~.(log ( (Gk) / (G) )}  k=l" (41) 
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From the formula (41) we directly arrive at the function Prs(t), 

P~(t) = l o  t}))lk=l. (42) ~-~(log ({Gk, t}/{G, 

It can be shown that 

/x (Gk) =/~ (G - er~) - k2tz (G - vr - vs) - 2k ~ tdx (G - Z~). 
a 

(Note that for k = 1 the above formula reduces to that given in Proposition 4). 

Substitution of (42) back into (41) gives 

/{G--tJr--1)s, i_lZoltj{G-Z~, P ~ ( t ) = \  { G , ~ - t } . ) _ ~  \ ~ , ,  t}.). (43) 

If we set t = 0 in formula (43), then we obtain the effect of acyclic structural 
details of the molecular topology on bond order, namely 

Pr~ (0) = ( [ o  - v ~  - v A / E G ] > .  

Consequently, the difference P ~ -  P<~(0) represents the joint effect of all cycles 
on bond order. This quantity has been examined in [32] and called the bond 
resonance energy, BRE. Whereas P~(0) is always positive, the bond resonance 
energy may be both a positive or negative number or zero. 

In order to determine the effect of a particular cycle Z~ on P~ we have to 
distinguish between the case when the edge e~ belongs to Za and the case when 
e~ is not an edge of Z~. Using (25) we calculated for the former case: 

and 

OP'~(O)=-i-lz~ "][G]-2[G-v,-v~] [G] 

�9 -Iz I/EG-Z,,] [G]-2[G-vr-v~] \ 
pr~(a)=_t a\ _ ~  [G]-2i-lZJEG-Za] / 

when IZ~] is even, 

(44) 

(45) 

= 0 (46) 
ata 

and 

Pr~(a) = 2 (  [ G - Z a ] 2  [G]- 2[G-vr-vs]\ 
[ G ] + -- oy / 

when ]Za] is odd. If the edge ers does not belong to Za we computed: 

aPrs(O) _2i_lzol([ G, vr, vs, Za]) 
o,o = F G 7  ' 

(47) 

(48) 
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and 

pr~(a)=-2i-'zol< [G'v'V_izf ~ ] > 
[O]([O]-2i-  o[O - Z a ] )  

when IZ~I is even, 

(49) 

oP~,(o) 
= 0 ( 5 0 )  

Ot~ 

and 

pr~(a)=4<EG-Z~] [G, vr, v~,Z~] \ 
[G] [G]2+4[G-Z~]2/ 

(51) 

when IZal is odd. In the above expressions the abbreviation 

[O - v . - v s  - Z ~ ] [ G ] - [ G -  Z~][G-v~-v~] = [G, v,, Vs, Za] 

has been used. P,.s(a) is the total effect of the cycle Za on the bond order Prs. 

It seems to be a hard task to predict the sign of the expressions (44), (45), (47), 
(48), (49) and (51). According to the inequality which is proved in the Appendix, 
if IZal is even, then the polynomial [ G ] - 2 i - l z a l [ G - Z a ]  has positive values for 
all Ix] > 0. Therefore the sign of the integrals (44), (45) and (47) depends on the 
sign of the function [G]-2[G-v , . - v s ] ,  while the sign of (48), (49) and (51) is 
determined by [G, vr, v~, Za]. Both functions may change their sign in the interval 
(0, co). 

Since [G] is a polynomial with non-negative coefficients of degree n and [G - Vr -- 
Vs] has degree n - 2 ,  their difference is larger than zero for large values of the 
variable x (at least for ]xl-> 1). Assuming that the integration over the interval 
where [ G ] - 2 [ G - v r - v ~ ]  is positive gives the major contribution to (44) and 
(45), we can formulate the following: 

Rule 7. A (4m + 2)-membered cycle has a positive (increasing) contribution to 
the ~'-electron bond order of all bonds which lie on this cycle. A (4m)-membered 
cycle decreases the 7r-electron bond order of the bonds which belong to this cycle. 

In addition to this rule, from (46) and (47) is seen that odd-membered cycles 
have no first order, and a small total effect on the bond order. 

Since [G, v,  v~, Z~] is the difference between two polynomials of the same degree 
(=2n-2-1Zol), we conclude that the integrals (48), (49) and (51) are small 
relative to (44) and (45). Therefore from (48)-(51) results: 

Rule 8. Cycles which do not contain the bond rs have small influence on Pr~. 
Their effect may be both positive and negative, depending on finer details of 
the molecular topology. 
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4. Conclusion 

The method exposed in the present paper  is in principle applicable to the 
examination of the effect of cyclic conjugation on all ~r-electron indices of the 
Hiickel model. In all cases when modulo 4 type rules could be observed, these 
regularities had the following common algebraic background. 

In calculating the expressions Ja, Jab, Jabc etc. in Eq. (20) we must necessarily 
use the identity (25). The signs of the integral expressions for Ja, Jab etc. are 
usually determined by the multiplyer i -Izal in Eq. (25). Since i -Fzal= +i ,  - i , - 1  
and +i  depending on whether  the size of the cycle Z ,  is 4m, 4m + 1, 4m + 2  or 
4m + 3, modulo 4 type regularities for the sign of Ja, Jab etc. must necessarily arise. 

Hence there appears to be a close relation between the mathematical  theory of 
the numerous modulo 4 rules of the Hiickel model,  and the fact that +1, - 1 ,  +i  
and - i  form a group (of order 4) with respect to multiplication. 

Acknowledgement: One  of the authors  (I.G.) thanks  the Alexander  von Humbold t  Foundat ion for 
financial support  of this research. 

Appendix 

Proposition : If Z is an even-membered  cycle of a graph G, then 

Z I G - Z ,  x]/[a, x]<- 1 (52) 

for all real values of the variable x. 

Proof: Let G possess n vertices and let n' = n if n is even while n '  = n - 1 if n 
is odd. Then according to eqs. (2) and (23), 

p ( G  - Z ,  k )x  ~'-Izl-zk 

[O - Z ,  x]/[a, x] = k 
Y~p(G, k )x  n'-zk ' (53) 
k 

where Izl is the size of the cycle Z and p(H,  k)  denotes the number  of k-  
matchings of the graph H. Note that the subgraph G - Z  possesses n-IZl 
vertices. 

Let  the vertices of the cycle Z be labelled by vl,  Ve . . . .  , Vlz j in such a manner  
that vt-1 is adjacent to vi, i = 2, 3 . . . . .  Izl and vlz I is adjacent to vl. Let  Mk be 
a k-matching of the subgraph G - Z .  Then Mkw{e12, e34 . . . . .  elZl_l,lZl} and 
Mk u {e23, e45 . . . . .  elZl,l } are two distinct (k + [Zl/2)-matchings of G. Therefore  
the number  of (k + IZl/2)-matchings of G is at least two times larger than the 
number  of k-matchings of G - Z ,  

2 p ( G - Z ,  k)  <-p(G, k + IzI/2) 
for all k = 0, 1, 2 . . . . .  
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Since n ' - [ Z [ -  2k is an even number, we further conclude that 

2p(G - Z ,  k)x (n'-Izl~-2k <-p(G, k + Izl/2)x n'-2(k§ 

for all k and for all real values of x. Consequently, 

2 Y,p(G - Z ,  k)x (n'-Lzl)-ak <-~p(G, k +]Zl/2)x n'-2(k+lzt/2~ 
k k 

<-~,p(G, k)x n'-2k 
k 

and the inequality (52) follows from the identity (53). Q.E.D.  

If Z is an odd-membered cycle, then there exist graphs for which (52) is not 
satisfied. 

References 

1. For details of the Hiickel theory, especially for early work in this field see: (a) Hiickel, E.: 
Grundziige der Theorie unges~ittigter und aromatischer Verbindungen. Berlin: Verlag Chemie 
1940; (b) Coulson, C. A., O'Leary, B., Mallion, R. B.: Hiickel theory for organic chemists. 
London: Academic Press 1978 

2. See for example: Effenberger, F., Fischer, P., Schoeller, W. W., Stohrer, W.-D.: Tetrahedron 
34, 2409 (1978); Briiuchle, C., Kabza, H., VoitlS.nder, J.: Chem. Phys. 48, 369 (1980) 

3. See for example: Kollmar, H.: J. Am. Chem. Soc. 101, 4832 (1979); Basilevsky, M. V., Weinberg, 
N. N.: Int. J. Quantum Chem. 17, 399 (1980) 

4. Woodward, R. B., Hoffmann, R.: The conservation of orbital symmetry. Weinheim: Verlag 
Chemie 1970 

5. Dewar, M. J. S., Dougherty, R. C.: The PMO theory of organic chemistry. New York: Plenum 
Press 1975 

6. For examples where the HMO results are in essential disagreement with observed facts see: 
Michl, J., Thulstrup, E. W.: Tetrahedron 32, 205 (1976); Heilbronner, E., Jones, T. B.: J. Am. 
Chem. Soc. 100, 6506 (1978); Gutman, I.: Theoret. Chim. Acta (Berl.) 56, 89 (1980); see also 
[ lb]  pp. 134-137 

7. Graovac, A., Gutman, I., Trinajstid, N.: Topological approach to the chemistry of conjugated 
molecules. Berlin: Springer-Verlag 1977; see also [lb] 

8. Cvetkovid, D., Doob, M., Sachs, H.: Spectra of graphs - theory and application. New York: 
Academic Press 1980 

9. Gutman, I.: Match (Miilheim) 6, 75 (1979) and references cited therein 
10. Gutman, I., Hosoya, H.: Theoret. Chim. Acta (Berl.) 48, 279 (1978) 
11. Heilmann, O. J., Lieb, E. H.: Commun. Math. Phys. 25, 190 (1972) 
12. Farrell, E. J.: J. Comb. Theory 27B, 75 (1979) 
13. Godsil, C. D., Gutman, I.: J. Graph Theory, in press 
14. Gutman, I.: unpublished work 
15. Gutman, I.: Chem. Phys. Letters 66, 595 (1979) 
16. Gutman, I.: Z. Naturforsch. 35a, 458 (1980) 
17. Graovac, A., Gutman, I., Trinajsti6, N., Zivkovi6, T.: Theoret. Chim. Acta (Berl.) 26, 67 (1972) 
18. Farrell, E. J.: J. Comb. Theory 26B, 111 (1979) 
19. Gutman, I.: Z. Naturforsch. 33a, 214 (1978) and references therein 
20. Gutman, I.: J. Chem. Soc. Faraday II 75, 799 (1979) 
21. Gutman, I., Trinajsti6, N.: Chem. Phys. Letters 20, 257 (1973); J. Chem. Phys. 64, 4921 (1976); 

Canad. J. Chem. 54, 1789 (1976); Hosoya, H., Hosoi, K., Gutman, I.: Theoret. Chim. Acta 



226 I. Gutman and O. E. Polansky 

(Bed.) 38, 37 (1975); Gutman, I.: Chem. Phys. Letters 46, 169 (1977); Z. Naturforsch. 32a, 
1072 (1977) 

22. Gutman, I., Trinajsti6, N., Zivkovi6, T.: Tetrahedron 29, 3449 (1973) 
23. Gutman, I., Trinajsti6, N.: Croat. Chem. Acta 48, 19 (1976); Gutman, I., Yamaguchi, T., 

Hosoya, H.: Bull. Chem. Soc. Japan 49, 1811 (1976) 
24. Gutman, I.: Z. Naturforsch. 32a, 765 (1977); Gutman, I., Bosanac, S., Trinajsti6, N.: Croat. 

Chem. Acta 51, 293 (1978) 
25. Gutman, I., Knop, J. V., Trinajsti6, N.: Z. Natufforsch. 29b, 80 (1974) 
26. Heilbronner, E.: Tetrahedron Letters, 1923 (1964) 
27. Goldstein, M. J., Hoffman, R.: J. Am. Chem. Soc. 93, 6193 (1971); Herndon, W. C.: J. Am. 

Chem. Soc. 95, 2404 (1973); 96, 7605 (1974); Kruszewski, J., Krygowski, T. M.: Canad. J. 
hem. 53, 945 (1975); Day, A. C.: J. Am. Chem. Soc. 97, 2431 (1975); Randi6, M.: J. Am. 
Chem. Soc. 99, 444 (1977); Tetrahedron 33, 1905 (1977); Inagaki, S., Hiraba~rashi, Y.: J. Am. 
Chem. Soc. 99, 7418 (1977); Plath, P. J.: Match (Miilheim) 7, 229 (1979) 

28. Coulson, C. A., Longuet-Higgins, H. C.: Proc. Roy. Soc. (London) A191, 39 (1947) 
29. Coulson, C. A.: J. Chem. Soc., 3111 (1954) 
30. Gutman, I.: Theoret. Chim. Acta (Berl.) 50, 287 (1979) 
31. Aihara, J.: J. Am. Chem. Soc. 98, 2750 (1976); Gutman, I., Milun, M., Trinajsti6, N.: J. Am. 

Chem. Soc. 99, 1692 (1977) 
32. Gutman, I.: Bull. Soc. Chim. Beograd 44, 173 (1979) 

Received December 18, 1980 


